
Problem ID: helplesshumans
Did you know that . . . ?

. . . this problem was originally
named Brace Yourself?
Amazing name, isn’t it?

When writing text, people sometimes rely on braces to inject ad-
ditional details to certain statements. Due to human defectiveness,
braces (especially closing ones are prone to be missing. A differ-
ent race – the compilers – heavily relies on braces to be balanced
and well nested. To prevent misapprehensions and ensure proper
interaction between humans and compilers, all humans’ texts need to be verified prior to passing
them on to the compilers.

The pairs of characters (), { }, [], and < > are used as control symbols in source code and
each define a control block. An opening brace (i.e., one of ({[<) marks the start of a control
block, the corresponding closing brace (i.e., the matching brace)}]>) marks the end of the
control block. Control blocks can encapsulate other control blocks, but no two control blocks
may intersect each other. A text may also contain string literals, which are character sequences
delimited by a pair of quotation marks ". Quotation marks cancel out control characters, which
means that after the first quotation mark no character is interpreted as control character until the
next quotation mark. Write a source code check that tests if all string literals and control blocks
are valid and closed.

Input

The input consists of:
• One or more lines (separated by \n) made up of whitespace, numbers, alphabetic charac-

ters, and all other printable ASCII characters. More precisely, the set of allowed characters
is the ASCII range 0x20-0x7e, as well as 0x09 (tab) and 0x0a (newline).

The total number of characters in the input is at most 1 048 576 (= 1MiB).

Output

Output correct if all control blocks and strings are valid and closed or incorrect if not.

Sample Input 1 Sample Output 1

{ [< "this is a > string" >]
this is not a string } ()

correct

Sample Input 2 Sample Output 2

{ [< "this is a > string "]
this is not a string } ()

incorrect

