Problem ID: hyperilluminati

Once again the time dawns to demonstrate the sheer power of the Illuminati. To do so, it was decided to build an *n*-dimensional hyper-step pyramid using *n*-dimensional *blocks*:

- All the steps of the pyramid are *n*-dimensional hyper-cuboids.
- Every step has a height of exactly 1 *block* in the *n*-th dimension.
- The pyramid has s steps and the base step is s blocks long in every other of the n-1 dimensions.
- Every subsequent higher step is 1 block shorter in each of the n-1 dimensions than the step below it.
- The top step is exactly 1 *block*.

To prove their might even further the Illuminati leaders have decided to add two more requirements:

- n must be at least 3.
- The number of *blocks* used to build the pyramid must be a meaningful number.

Figure 1: A 3-dimensional hyper pyramid with 3 steps consisting of 14 blocks in total.

Input

The input consists of:

• one line with a single integer $m \ (1 \le m \le 10^{16})$. This integer is the meaningful number the leaders have chosen.

Output

If a hyper-step pyramid matching all the requirements exists, output a single line with two integers n and s, the dimension of the pyramid and its number of steps. If none exists, output impossible. If multiple solutions exist, any will be accepted.

Sample Input 1	Sample Output 1
Sample Input 2 9	Sample Output 2 4 2
O a multiple multiple	
Sample Input 3 24	Sample Output 3 impossible