Problem ID: hyperilluminati

Once again the time dawns to demonstrate the sheer power of the Illuminati. To do so, it was decided to build an n-dimensional hyper-step pyramid using n-dimensional blocks:

- All the steps of the pyramid are n-dimensional hyper-cuboids.
- Every step has a height of exactly 1 block in the n-th dimension.
- The pyramid has s steps and the base step is s blocks long in every other of the $n-1$ dimensions.
- Every subsequent higher step is 1 block shorter in each of the $n-1$ dimensions than the step below it.
- The top step is exactly 1 block.

To prove their might even further the Illuminati leaders have decided to add two more requirements:

- n must be at least 3 .
- The number of blocks used to build the pyramid must be a meaningful number.

Figure 1: A 3-dimensional hyper pyramid with 3 steps consisting of 14 blocks in total.

Input

The input consists of:

- one line with a single integer $m\left(1 \leq m \leq 10^{16}\right)$. This integer is the meaningful number the leaders have chosen.

Output

If a hyper-step pyramid matching all the requirements exists, output a single line with two integers n and s, the dimension of the pyramid and its number of steps. If none exists, output impossible. If multiple solutions exist, any will be accepted.

Sample Input 1

14

Sample Input 2

9

Sample Input 3

24

Sample Input 4

9134731356568978

Sample Output 1

33

Sample Output 2

42

Sample Output 3

impossible

Sample Output 4

52147

