Problem BIPRIMES: BiPrimes

Every positive integer which is only divisible by 1 and itself is called a prime. Accordingly, a bi-prime is a number k that is prime and whose inverse is also prime. By inverse we mean the integer number that results when the order of k;s digits is reversed.

 $isBiPrime(n) \ll isPrime(n)\&isPrime(inv(n))$

For example, inv(107) = 701. Since both 107 and 701 are primes, 107 is a bi-prime. For integers k < 10, we obviously have k = inv(k), so all primes smaller than 10 are automatically bi-primes. When inverting a number, leading zeros must be ignored: inv(10200) = 201, but inv(201) = 102. Hence, we cannot be sure that inv(inv(k)) = k.

Input

Input consists of a number of lines, each of which contains a positive integer $n < 10^9$. Input is terminated by an empty line or EOF.

Output

For each input line, print one output line which contains n if n is a bi-prime or the next bigger bi-prime number if n is no bi-prime.

Sample Input 1	Sample Output 1
1	2
2	2
15	17
48	71
130	131
7312876	7312909
20802187	3000037