Problem BIPRIMES: BiPrimes

Every positive integer which is only divisible by 1 and itself is called a prime. Accordingly, a bi-prime is a number k that is prime and whose inverse is also prime. By inverse we mean the integer number that results when the order of k;s digits is reversed.

$$
\operatorname{isBiPrime}(n)<=>\operatorname{isPrime}(n) \& i s \operatorname{Prime}(\operatorname{inv}(n))
$$

For example, $\operatorname{inv}(107)=701$. Since both 107 and 701 are primes, 107 is a bi-prime. For integers $k<10$, we obviously have $k=\operatorname{inv}(k)$, so all primes smaller than 10 are automatically bi-primes. When inverting a number, leading zeros must be ignored: $\operatorname{inv}(10200)=201$, but $\operatorname{inv}(201)=102$. Hence, we cannot be sure that $\operatorname{inv}(\operatorname{inv}(k))=$ k.

Input

Input consists of a number of lines, each of which contains a positive integer $n<10^{9}$. Input is terminated by an empty line or EOF.

Output

For each input line, print one output line which contains n if n is a bi-prime or the next bigger bi-prime number if n is no bi-prime.

Sample Input 1

1
2 2
15
48 71
130131
73128767312909
20802187

Sample Output 1

2

2
17
71

30000037

